메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김제민 (명지대학교) 박영택 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.42 No.3
발행연도
2015.3
수록면
307 - 319 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 대용량 온톨로지를 추론하기 위해 하둡 기반의 분산 클러스터 환경을 구축한 후, 맵-리듀스 알고리즘을 기반으로 추론을 수행하는 방식이 활발히 연구되고 있다. 그러나 본 논문에서는 분산 클러스터의 메모리 환경에서 대용량 OWL Horst Lite 온톨로지 추론을 위한 기법을 제안한다. 대용량 온톨로지 추론에 사용되는 규칙 기반 추론 방식은 데이터가 더 이상 추론 되지 않을 때까지 트리플 형식으로 표현된 온톨로지에 추론 규칙을 반복적으로 수행한다. 따라서 컴퓨터 디스크에 적재된 대용량의 온톨로지를 대상으로 추론을 수행하면 추론 시스템의 성능이 상당히 저하된다. 이러한 단점을 극복하기 위해서 본 논문에서는 메모리 기반의 분산 클러스터 프레임워크인 Spark를 기반으로 온톨로지를 메모리에 적재한 후, 추론을 수행하는 기법을 제안한다. Spark에 적합한 OWL Horst Lite 온톨로지 추론 시스템을 구현하기 위해서 대용량 온톨로지를 적절한 크기의 블록으로 분할한 후, 각각의 블록을 분산 클러스터를 구성하는 각 노드의 메모리에 분산 적재하여 작업을 수행하는 방법론을 제안하였다. 제안하는 기법의 효율성을 검증하기 위해, 온톨로지 추론과 검색 속도를 평가하는 공식 데이터인 LUBM을 대상으로 실험하였다. 대표적인 맵-리듀스 기반 온톨로지 추론 엔진인 WebPIE와 비교 실험한 결과, LUBM8000(11억개 트리플, 155GB)에 대해서 WebPIE의 추론 처리량이 19k/초보다 3.2배 개선된 62k/초의 성능 향상이 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 분산 클러스터 메모리 기반 OWL Horst Lite 추론
4. 실험 및 평가
5. 결론 및 향후 연구
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0