메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Dalin Yang (Pukyong University) Hau Trung Nguyen (Pukyong University) Wan-Young Chung (Pukyong University)
저널정보
대한전자공학회 대한전자공학회 학술대회 2017년도 대한전자공학회 하계종합학술대회
발행연도
2017.6
수록면
904 - 907 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, Brain Computer Interfaces (BCI) has been used for converting human thoughts to commands for external device. However, a single modality-based control system has some limitations itself such as accuracy and control time. In order to improve system’s performance, this paper presents a hybrid system to implement the multidimensional control using motor imagery (MI) and steady-state visual evoked potentials (SSVEP). MI was employed to control the tank in the game to turn left or right for 90 degrees by imagining the hands grasp motions; whereas SSVEP was employed to control the machine to start, stop, or go forward. Additionally, various classification techniques including Support Vector Machine (SVM) and Artificial Neural Network (ANN) were applied for classifying MI signal. In the other hand, a Canonical Correlation Analysis (CCA) was used for SSVEP frequency recognition. The user was ask to control the car to follow a guiding path. Total error (i.e., total error distances across target points between guiding path and the actual path) was used to evaluate the performance of proposed system. Results shows that the proposed hybrid system can provide a good performance in terms of accuracy and total error along the guiding path. Moreover, the SVM-based classification achieved better accuracy compared with that of ANN-based classification (i.e., 78% vs. 75% on average).

목차

Abstract
I. INTRODUCTION
II. METHOD
III. EXPERIMENT AND RESULT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001038883