메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박정민 김혜영 (홍익대학교) 조성현 (홍익대학교)
저널정보
한국게임학회 한국게임학회 논문지 한국게임학회 논문지 제19권 제3호
발행연도
2019.6
수록면
5 - 14 (10page)
DOI
10.7583/JKGS.2019.19.3.5

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
게임 서버는 분산 서버를 기본으로 하고 있다. 분산 게임서버는 서버의 작업 부하를 분산하기 위한 일련의 알고리즘에 의해 각 게임 서버의 부하를 일정하게 나누어서 클라이언트들의 요청에 대한 서버의 응답시간 및 서버의 가용성을 효율적으로 관리한다. 본 논문에서는 시뮬레이션 환경에서 기존 연구 방식인 Greedy 알고리즘과, Reinforcement Learning의 한 줄기인 Policy Gradient 중 PPO(Proximal Policy Optimazation)을 이용한 부하 분산 Agent를 제안하고, 시뮬레이션 한 후 기존 연구들과의 비교 분석을 통해 성능을 평가하였다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구
3. 제안 기법
4. 구현 및 성능 평가
5. 결론 및 향후 연구방향
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-050-000925941