메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dong-Min Kim (Korea National Defense University) Soo-jin Lee (Korea National Defense University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제10호(통권 제211호)
발행연도
2021.10
수록면
19 - 26 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 기반 악성코드 탐지 및 분류모델의 성능은 특성집합을 어떻게 구성하느냐에 따라 크게 좌우된다. 본 논문에서는 CNN 기반의 안드로이드 악성코드 탐지 시 탐지성능을 극대화할 수 있는 최적의 특성집합(feature set)을 선정하는 방법을 제안한다. 특성집합에 포함될 특성은 기계학습 및 딥러닝에서 특성추출을 위해 널리 사용되는 Chi-Square test 알고리즘을 사용하여 선정하였다. CICANDMAL2017 데이터세트를 대상으로 선정된 36개의 특성을 이용하여 CNN 모델을 학습시킨 후 악성코드 탐지성능을 측정한 결과 이진분류에서는 99.99%, 다중분류에서는 98.55%의 Accuracy를 달성하였다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Experimental Results
Ⅴ. Conclusions
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0