메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황희진 (Korea National Defense University) 이수진 (Korea National Defense University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제11호(통권 제212호)
발행연도
2021.11
수록면
41 - 49 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
악성코드를 포함한 모든 응용프로그램은 실행 시 API(Application Programming Interface)를 호출한다. 최근에는 이러한 특성을 활용하여 API Call 정보를 기반으로 악성코드를 탐지하고 분류하는 접근방법이 많은 관심을 받고 있다. 그러나 API Call 정보를 포함하는 데이터세트는 그 양이 방대하여 많은 계산 비용과 처리시간이 필요하다. 또한, 악성코드 분류에 큰 영향을 미치지 않는 정보들이 학습모델의 분류 정확도에 영향을 미칠 수도 있다. 이에 본 논문에서는 다양한 특성 선택(feature selection) 방법을 적용하여 API Call 정보에 대한 차원을 축소시킨 후, 핵심 특성 집합을 추출하는 방안을 제시한다. 실험은 최근 발표된 안드로이드 악성코드 데이터세트인 CICAndMal2020을 이용하였다. 다양한 특성 선택 방법으로 핵심 특성 집합을 추출한 후 CNN(Convolutional Neural Network)을 이용하여 안드로이드 악성코드 분류를 시도하고 결과를 분석하였다. 그 결과 특성 선택 알고리즘에 따라 선택되는 특성 집합이나 가중치 우선순위가 달라짐을 확인하였다. 그리고 이진분류의 경우 특성 집합을 전체 크기의 15% 크기로 줄이더라도 97% 수준의 정확도로 악성코드를 분류하였다. 다중분류의 경우에는 최대 8% 이하의 크기로 특성 집합을 줄이면서도 평균 83%의 정확도를 달성하였다.

목차

[Abstract]
[요약]
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Results
V. Conclusions
REFERENCES

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0