메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
우상철 (동국대학교) 성연식 (동국대학교)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제16권 제5호
발행연도
2020.1
수록면
1,223 - 1,230 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, extensive studies have been conducted to apply deep learning to reinforcement learning to solve thestate-space problem. If the state-space problem was solved, reinforcement learning would become applicablein various fields. For example, users can utilize dance-tutorial systems to learn how to dance by watching andimitating a virtual instructor. The instructor can perform the optimal dance to the music, to which reinforcementlearning is applied. In this study, we propose a method of reinforcement learning in which the action space isdynamically adjusted. Because actions that are not performed or are unlikely to be optimal are not learned, andthe state space is not allocated, the learning time can be shortened, and the state space can be reduced. In anexperiment, the proposed method shows results similar to those of traditional Q-learning even when the statespace of the proposed method is reduced to approximately 0.33% of that of Q-learning. Consequently, theproposed method reduces the cost and time required for learning. Traditional Q-learning requires 6 million statespaces for learning 100,000 times. In contrast, the proposed method requires only 20,000 state spaces. A higherwinning rate can be achieved in a shorter period of time by retrieving 20,000 state spaces instead of 6 million.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0