메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이한성 (Kangwon National University) 조현종 (Kangwon National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제9호
발행연도
2022.9
수록면
1,259 - 1,265 (7page)
DOI
10.5370/KIEE.2022.71.9.1259

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Gastric cancer is a common cancer worldwide, especially in Korea. Early diagnosis is very important to increase the full recovery rate. However, early gastric cancer has no special symptoms and is a disease that even experts find difficult to diagnose in gastroscopy. Therefore, in this paper proposed a computer-aided diagnosis(CADx) for early gastric cancer diagnosis using EfficientNetV2-L. Due to the nature of medical data, it is difficult to collect a large amount of data. The data used for training was augmented using Cifar10 policy of the Google"s AutoAugment. Additionally, the augmented image was used as an input to the model trained with the original dataset and filtered according to the classification threshold. EfficientNetV2 is a classification network designed Training-NAS that can learn the feature of lesions with a small number of parameters. As a result, EfficientNetV2 set to the threshold value of 0.9 achieved the performance of accuracy 0.943 for early gastric cancer and abnormal image classification. The AUC value also increases from 0.972 to 0.991, showing that the data filtering method of this study was effective for improvement of classification performance.

목차

Abstract
1. 서론
2. 본론
3. 연구결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-560-001689082