메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shah Mahsoom ALi (Inje University) Tagne Poupi Theodore Armand (Inje University) Khadija Begum (Inje University) Hee-Cheol Kim (Inje University)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2023년도 추계종합학술대회 논문집 제27권 제2호
발행연도
2023.10
수록면
540 - 544 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Gastric cancer, also known as stomach cancer, presents a significant health challenge, especially in East Asia, where it ranks among the leading causes of cancer-related death in countries like Japan, South Korea, and China. Early detection and precise characterization of gastric cancer are paramount for improving patient outcomes. In this study, we aim to harness the power of radiomic feature extraction through the Pyradiomics library to enhance the characterization of gastric cancer using medical imaging data collected from several Korean hospitals. Our research focuses on extracting key radiomic features, including Gray Level Co-occurrence Matrix (GLCM) features such as contrast, homogeneity, correlation, dissimilarity, and energy, as well as First Order Features like a energy, entropy, Mad, Root mean square and contrast. These extracted features served as the foundation for the classification process, wherein we employed advanced machine learning techniques. Leveraging radiomic features and advanced machine learning enhances interpretability and generalizability in gastric cancer characterization, complementing CNNs with comprehensive insights from smaller datasets and facilitating clinical data integration for improved predictive accuracy and computational efficiency in healthcare setting.

목차

ABSTRACT
Ⅰ Introduction:
Materials and Methods:
Gray Level Co-occurrence Matrix (GLCM) Features) :
Advanced Machine Learning:
Results and Discussions :
Model Evaluation:
Conclusion:
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0