메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서승원 (서울과학기술대학교) 황상흠 (서울과학기술대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제49권 제2호
발행연도
2023.4
수록면
133 - 141 (9page)
DOI
10.7232/JKIIE.2023.49.2.133

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In the field of natural language processing, a lot of progress has been made with the advent of Transformer having a self-attention mechanism. At the same time, the recently increasing model size causes difficulties in deploying the model for online serving that requires fast inference. To address this issue, one can employ model compression techniques when a target domain is coherent with the training corpus (i.e., a general domain) of pre-trained models such as BERT. However, the additional domain adaptation step is required along with model compression when we leverage such pre-trained models for special target domains such as medicine, law, finance, etc. In this paper, we propose an Efficient Domain Adaptive Distillation (EDAD) method to efficiently create a lightweight model capable of fast inference for a target domain by integrating knowledge distillation, which is one of the popular model compression methods, and domain adaptation processes. Experimental results demonstrate that EDAD can train a compact model for a target domain with much lower computational costs by integrating the two individual processes, adaptation and compression, into a single process and shows comparable performance with existing methods for named entity recognition (NER) tasks in the medical domain.

목차

1. 서론
2. 선행 연구
3. 방법론
4. 실험
5. 결론
참고문헌

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0