메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
황상호 (경북IT융합산업기술원) 김성호 (경북IT융합산업기술원) 김성재 (SMARTGIO) 김태근 (국립공원연구원)
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제18권 제1호
발행연도
2023.2
수록면
1 - 7 (7page)
DOI
10.14372/IEMEK.2023.18.1.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we implement a lossless compression technique for time-series data generated by IoT (Internet of Things) devices to reduce the disk spaces. The proposed compression technique reduces the size of the encoded data by selectively applying CNN (Convolutional Neural Networks) or Delta encoding depending on the situation in the Forecasting algorithm that performs prediction on time series data. In addition, the proposed technique sequentially performs zigzag encoding, splitting, and bit packing to increase the compression ratio. We showed that the proposed compression method has a compression ratio of up to 1.60 for the original data.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0